Infrared & Raman Spectroscopy for PAT applications

Infrared & Raman Spectroscopy Group

Paul Gattinger

RECENDT - REsearch CEnter for Non-Destructive Testing

Science Park @ Johannes Kepler University Linz, Austria

- Founded in 2009
- ~40 researchers
- Funded research (national, H2020, HEU, ITN, ...)
- Contract research

6 Research Groups:

- Infrared & Raman Spectroscopy
- Optical Coherence Tomography
- Terahertz Technology
- Laser-Ultrasound
- Photoacoustics
- Physical & Computational Acoustics

Optics

Acoustics

What is Infrared Spectroscopy?

Infrared radiation:

Infrared Spectroscopy:

- Measurement of molecular absorptions
- Molecules absorb specific parts of IR radiation
- Absorption of radiation induces molecular vibration
- Mid Infrared: fundamental vibrations
- Near Infrared: overtone and combination vibrations

How can we measure IR radiation?

3 different basic types of IR spectrometers:

Dispersive spectrometers

- Entire spectrum measured at the same time
- Fast measurements possible
- Narrow entrance slit limits strength of incoming signal

Tunable Fabry-Pérot filters

- Cost efficient
- Flexible spectral range
- Compact form factor
- Narrow spectral range
- Low spectral resolution

Fourier Transform Spectrometer

- Very broad spectral range
- Spectral multiplexing advantage
- High spectral resolution
- Inflexible (fixed spectral range)
- Relatively low measurement speed

What is Raman Spectroscopy?

Raman scattering:

Inelastic scattering effect

- Monochromatic (Visible-NIR) light used to excite Raman scattering
- Raman scattered light gets shifted towards lower frequencies
- Shift corresponds to wavelengths (frequencies) of fundamental molecular vibrations

Difference to Infrared Spectroscopy:

- Shifted wavelength still in the Visible-NIR light regime
- Silicon detectors can be used → spectrometers are simple and sensitive
- IR- and Raman spectroscopy are complementary techniques
- Raman spectrum is less influenced by water (often preferable for aqueous samples)
- Raman: sensitive to vibrations of homonuclear bonds
- Infrared: sensitive to polar bonds

NIR Spectroscopy in PAT (Process Analytical Technology) RECENDT

NIR is an established technique in PAT

- In-process measurements of many different materials/chemicals
- Effective **chemical analysis** (multivariate data analysis/chemometrics)
- **Real time** measurements
- **Contact-less** measurements possible
- Highly compatible with **fiber-optics**

Recent development: **Miniaturization of spectrometers**

- Higher cost efficiency / lower price
- Compact hardware
- High ruggedness / low maintenance

Application Example – Formalin Measurement

NIR-based in-line process control in a melamine (MF) and phenol formaldehyde (PF) resin batch production

 Implementation of miniaturized spectrometer for in-line monitoring of formaldehyde concentration in formalin via immersion probe

Real-time NIR-measurement utilizing miniaturized NIR spectrometer

Application Example – Formalin Measurement

Comparison of in-line acquired data to off-line reference measurements

- → Reduction of wet chemical offline reference measurements by >90%
- → Savings of ~200k€ per year due to reduced efforts
- → Better working conditions (reduced exposure to hazardous formaldehyde)
- → Additional revenue due to more efficient use of available reactor space

Application Example – Moisture Monitoring

NIR-based moisture sensor for in-line moisture measurement of **products in the food industry**

Starch derived products

- Calibration curves for both products demonstrate applicability for in-line moisture measurement using miniaturized NIR-spectrometers
- Development of the final customer specific inline sensors is currently in progress

Application Example – In-Situ Raman Measurements

In-situ Raman measurements of **mild steel corrosion**

- Sped up corrosion in salt-fog chamber
- 8 days of corrosion cycles (salt-fog & drying phases)
- Chemical transitions during corrosion cycles could be monitored

Raman Spectroscopy is a powerful technique for in-process measurements even under adverse conditions (here: salt-fog)

Representation of the chemical transitions during the corrosion cycles

Dynamics and time profile of the contributions of four components to the experimental spectra set, as determined with MCR-ALS analysis, here tentatively assigned to four chemical species as indicated.

Summary

 Infrared & Raman spectroscopy are complementary non-destructive methods for chemical analysis

• 3 basic different types of IR-spectrometers

- Contactless as well as in-contact real-time measurements are possible
- Highly compatible with PAT applications
- Miniaturized spectrometers allow for strong cost reduction
 without significant cutbacks in measurement performance

Acknowledgements

Infrared and Raman Group @ RECENDT

External Partners:

METADYNEA

Funding:

