

# Digital Process Design for Nanoparticle Manufacturing

#### <u>Hannes Bauer</u>

Research Center Pharmaceutical Engineering, Graz, Austria

















## Modeling and Simulation Toolbox













## PHOENIX OITB

Enabling Nanopharmaceutical Innovative Products





## Our Aim within PHOENIX

## **RCPE** Goal

Develop a Simulation Framework for Digital Process Design Studies

### Processes

- Nanocrystal formation (top-down)
- Nano-emulsion formation (top-down)



# Regulatory Framework

## Quality by Design (QbD)

- Accepted by regulatory agencies (ICH guidelines Q8 (R2), ...)
- Favors systematic process understanding
- "Quality by Design" instead of "Quality by Testing"



# Multiscale Modeling of Nanoparticles



- Flow rates
- Pressure
- Temperature
- Composition

- Particle formation kinetics
- Aggregation kinetics
- Assembly kinetics
- Break-up kinetics, dispersion kinetics

 Physico-chemical properties



## Simulation Methods

time scale



# Molecular simulations

Molecular Dynamics (MD)



# Mesoscale simulations

- Population Balance Models (PBM)
- Dissipative Particle Dynamics (DPD)
- Coarse grained Molecular Dynamics (cg-MD)



## Device-scale Computation

- Computational Fluid Dynamics (CFD)
- Discrete Element Method (DEM)
- Smoothed Particle Hydrodynamics (SPH)
- Finite Element Method (FEM)

length scale



## Benefits of a Simulation Model

- Demonstrates fundamental understanding of complex systems
- Digital magnifying glass
- Prediction of target quantities
- Narrow-down design space
- Results in reduced uncertainty/risk
- Results in improved quality
- Brings nanopharmaceuticals faster to the patient
- Valid over the entire product life-cycle



# Challenge: Disperse Multiphase Systems

#### Process scale

- Computational cells larger than particle size
- Keeping track of the fate of numerous nanoparticles
- Dense regime (interactions become important)







Simulation



# Challenge: Turbulence Modeling

Computational cell (coarsened for visibility)

### Process scale

- Fluid properties vary chaotically in space and time.
- Involves wide range of time and length scales
- Large number of computational cells and small timesteps
- High performance requirements for simulations (~days)



Flow visualization of a turbulent jet, made by laserinduced fluorescence. The jet exhibits a wide range of length scales, an important characteristic of turbulent flows.(source Wikipedia)



# Challenge: Formation Kinetics

## Mesoscale

# Top-down

## **Breakage kinetics**



## **Dispersion kinetics**





# Challenge: Physico-chemical Properties

#### Microscale

- Governing equations depend on material properties.
- Bulk properties are often uncharacterized.
- Interface properties are often uncharacterized.
- Properties change with local thermodynamic state (p,T,c).





## Concluding Remarks

- Tools for integrated process and product design are available
- Multiscale phenomena
- Nanopharmaceutical-specific challenges remain
- Simulation model valid over the entire life-cycle



# Digital Process Design for Nanoparticle Manufacturing

<u>Hannes Bauer</u>

hannes.bauer@rcpe.at

Research Center Pharmaceutical Engineering, Graz, Austria















